
An Agent-based System for Modelling the Searching Process on the Web

C. Cândea
Intelligent Agents Lab.

AI Research Group

Reconstrucţiei, Sibiu, Romania

ciprinac@airg.verena.ro

M. Staicu
Intelligent Agents Lab.

AI Research Group

Reconstrucţiei, Sibiu, Romania

mariuss@airg.verena.ro

C. B. Zamfirescu
Department of Computer Science

“Lucian Blaga” University of Sibiu

Emil Cioran, Sibiu, Romania

zbc@acm.org

Abstract Due to the vastness and dynamic nature

of the World Wide Web, there is a tremendous need

for flexible services-finding systems that can be easily

customised to the personal interests of individuals.

Following an agent-oriented approach, the research

in this paper aim at addressing such circumstances

in a more comprehensive framework, able to extend

our results to other interrelated challenges. Usually

settled in the information retrieval (IR) research

field some relevant issues together with some

effective methods to address them are identified and

discussed.

I. INTRODUCTION

The highly distributed nature of the Web, and the fact

that the content is constantly being updated, presents a

serious challenge to those who want to be aware of all

kinds of services made available daily. Various search

engines and software agents providing various different

services are already deployed on the Web. However,

novice users of the Web may have no idea where to start

their search, where to find what they really want, and

what agents are available for doing their job. Even

experienced users may not be aware of every change in

the Web, e.g., relevant web pages might not exist or

their content be valid anymore, and agents may appear

and disappear over time. The user is simply overtaxed

by manually searching in the Web for information or

appropriate agents.

When, at the beginning of 1950’s, Calvin Moers, one

of the information science pioneers, coined the term IR

he also defined the problems addressed by the activity:

(1) how to represent and organise information

intellectually? (2) how to specify a search intellectually?

and (3) what systems and techniques to use for those

processes?[1]. Most existing IR systems provide limited

assistance to users in locating the relevant information

that they need [2]. Much research has focused on

designing entirely new IR systems. Given the

development costs, organisational friction, and system

transfer expenses, the total replacement approach will

probably have limited impact. In this context, new

trends were emerged, exploring the feasibility of

combining software agents with effective IR techniques

to improve the performance of current IR systems [3].

Caglayan and Harrison [4] outlines some of the agents’

benefits in broad functional categories: automation,

customisation, notification, learning, tutoring and

messaging.

The remainder of this paper is organised as follows.

Section 2 summarises the outstanding category of agent-

based IR systems. The third section will present some

user modelling aspects that was been taken into account

in our implementation. Some architectural issues will be

given in the section 4. Finally, some remarks and future

path will establish the framework that will provide the

basis for future improvements of our tool.

II. AGENT-BASED IR SYSTEMS

Following Croft’s Top Ten List [2], of the most

significant questions facing current IR systems, Finin,

Nicholas and Mayfield [5] identified the agency features

that are able to accomplish each particular issue

(TABLE I).

TABLE I

IR and agent characteristics (adapted from [5])

Relevance Feedback

A
u

to
n

o
m

y

✓

C
o

o
p

eratio
n

✓

A
d

ap
tatio

n

Information Extraction ✓

Multimedia Retrieval ✓

Effective Retrieval ✓ ✓

Routing & Filtering ✓ ✓ ✓

Interfaces & Browsing ✓ ✓

Term Expansion

Efficiency & Flexibility ✓ ✓ ✓

Distributed IR ✓ ✓

Integrated solutions ✓ ✓ ✓

Consequently, the multi-agent system paradigm

represents one of the most promising approaches to

build complex and flexible architectures, offering a new

dimension for large-scale integration. Below will be

briefly outlined some of the well-known types of agent-

based IR systems.

Knowbot agent-based IR Systems. A ‘knowbot’ is an

agent-based IR system that provides a single query

language to access a variety of information sources. It

serves as a representative for the user (which demands

program autonomy). Some prototypical examples from

this category are MetaCrawler, SavvySearch and

NetbotJango.

Adaptive IR systems. The most cited and well-known

example from this category is the Fab [6] multi-agent

system developed at Stanford University. Fab

recommends web pages using adaptive information

retrieval techniques to learn an individual’s profile. For

that, it takes into account users’ feedback on how much

they liked recommended pages used to adapt the user’s

profile and assign credit or blame to the recommending

collection agents. A “genetic algorithm” is used to

evolve the population of collection agents. Collection of

agents will specialise over time to different topics,

serving distinct groups of users and useless collection

agents die, successful ones live and reproduce.

Collaborative IR systems. A collaborative filtration

agent-based IR system makes recommendations to a

person based on the preferences of similar users.

Content-based recommendation retrieves other

documents similar to those liked earlier, while

collaborative recommendation retrieves documents liked

by other people similar to a relevant one. Typically, they

operate with a large vector space (in which each element

represents one dimension) and a sparse vector of

element ratings. Some classical examples for

collaborative IR systems include Yenta, (recommend

people), Firefly (recommend products), and Phoaks

(recommend readings) [7].

Proactive IR systems. These are systems that only

provide information "on request". The user has to know

that there is knowledge to be had in a particular

situation. The system therefore needs at least some

ability to be proactive in its suggestions. However,

unlike the calendar program that warns of upcoming

meetings, it is impossible to create a back end able to

reliably know when a document is useful for a user. In

this context Remembrance Agent [8] indexes personal

files and e-mails when you perform a task, automatically

suggesting relevant documents providing continuous

associative recall. In the same category, Letizia [9] is a

user interface agent that assists a user in browsing the

World Wide Web.

III. ASPECTS OF USER MODELLING

Accordingly to [10], approaches to user modelling in IR

can be divided in two main categories: system-centred

and human-centred. While the first put emphasis on

relevance feedback (users are modelled through texts or

clusters of texts) and query expansion (the initial or

modified query is used as a basis for user modelling),

the second one takes into account question shape (user

modelling is accomplished through various interview

and analysis techniques). Another method is to build

into the system ways and means by which users can on

their own model articulate their problem with the

system’s assistance.

On the user side we can model cognitive, affective

and situational levels. Saracevic et al. [10] suggest that

user modelling is an interactive process that proceeds in

a dynamic way at different levels trying to capture

user’s cognitive, situational, affective and possible other

elements that bear upon effectiveness of retrieval. In

such a framework the request must be scrutinised

through all its related steps: from request formulation to

answer acceptance. So, in a searching process can be

delineated three key stages: request formulation,

selection of retrieved pages and locating the intended

information.

A. Profile enhancement

Keywords occurring in a particular searching process

(e.g. source description, contextual links) will be

clustered using a similarity matrix for the keywords

stored in the user profile, very similar with the approach

followed by [11] in their Jasper implementation.

Contrasting with them, we look at the search process as

a whole, instead of the pages stored in the ultimate part

of the user’s request. We capture the user’s choice, the

rational behind each of them, the open questions related

to the request, the assumption behind it and any related

supporting information. The matrix used will give us a

measure of the ‘similarity’ of keywords in the user’s

profile. For two keywords Ki and Kj, the Dice coefficient

is given by the equation (1).

2 X │Ki ∩ Kj│ / │Ki│ + │Kj│ (1)

Once the similarity matrix is calculated it is exploited in

two ways: profile enhancement (adding those keywords

most similar to the keywords explicitly represented in

the user’s profile in similar way of query reformulation

techniques) and proactive searching (search proactively

for new WWW pages relevant to user’s interest).

Using complete-link clustering technique [11] the

similarity between the least similar pair of items from

two clusters is taken as the similarity between the

clusters obtaining the cluster dendogram. A similarity

threshold can be set to provide the similarity degree

between the clusters.

B. Adaptive recommendation

Accordingly to [6] for the content-based approach, there

are four essential requirements:

w – a representation of a Web page.

m – a representation of the user’s interests.

p(w, m) – a function to determine the pertinence of a

Web page given a user’s interest

u(w, m, s) – a function returning an updated user

profile given the user’s feedback s on a page w.

The assumption underlying content-based systems is

that the content of a page is what establishes the user’s

interest. Going on, the content of a page can be

represented purely by considering the words contained

in the text and also by its description. Considering the

vector-space model of IR [12] as a suitable mechanism

for documents based representation, documents and

queries are represented as vectors. This model has been

used and studied extensively, representing a competitive

representation form with alternative IR methods [13].

This model assumes a dictionary vector d, where each

element di is a word. Each document then has a vector

w, where element wi is the weight of a word di for that

document. If the document does not contain di, then

wI=0. As in Fab implementation [6], in our formulation

we reduce words to their steams using the Porter

algorithm [14]. That will ignore words from standard

stop-list-words, and calculate a TFIDF weight: the

weight wi of a word di in a document W is given by

equation (2).

wi = (0.5 + 0.5 tf(i) / tfmax) (log (n / df(i))) (2)

where tf(i) is the number of times word di appears in

document W (the term frequency), df(i) is the number of

documents in the collection which contain di (the

document frequency), n is the number of documents in

the collection and tfmax is the maximum term frequency

over all words W. To avoid over-frittering, accordingly

to experiments described in [15], the optimum of used

words is between 30 and 100. In our implementation,

because the algorithm is used especially for

recommendation based on the page’s description and not

for the content of the page itself, a range between 20 and

50 is sufficient. Once the top approximately 30 words

have been picked we normalise w to be of a unit length

to allow comparisons between documents of different

lengths.

IV. ARCHITECTURE AND IMPLEMENTATION

At this time our implementation (SEA) is an example of

a IR multi-agent system, helping the user manage the

“information overload” problem often encountered

when using a WWW. To undertake all kinds of above

mentioned questions, our implementation [16] support

the following issues: (1) assist the user in the diagnosis

process and question reformulation; (2) select

appropriate search engine for efficient searching

accordingly to their profiles; (3) translate the question

into one or more queries and search strategies

acceptable to the given search engine; (4) manage

searching strategy; (5) support the user in the results

assessment; (6) support the user in resource description;

(7) provide the user with the appropriate outputs in a

suitable structure; and (8) advice he or she in the follow-

up activity.

The entire system is composed by several modules

(Fig. 1) which are shortly presented below.

The Web Browser Control has to present to the user

the found results and the web pages.

The User Interface Agent deals with user input and

shows the results. It consist in several sub-modules: New

User Wizard assists the user in creating a new user for

the system (it takes some basic information from the

user which will be used later for deciding how many

search process details will be hidden from him and

which default parameters are to be used), New Profile

Wizard that assists the user in the definition of a new

interest profile (the collected information consist in the

interest domains and relevant keywords - it is not

necessary to provide the keywords but doing so will

greatly improve the search process because the training

period will be much shorter), the Search Wizard takes

the request from the user and forwards it to the Profile

Agent (some search parameters may be set in this

wizard, also), and the Result Processing sub-module

deals with various conversions needed in the

presentation process.

The Profile Agent has to maintain the user profiles

and use it in the search process. It’s main tasks are to

generate the query from the user request and to refine

the user profile once the search process is completed.

Thus, the Query Generator takes user requests and build

generic queries used by the search engine agents (for

this it use information from the user profile), the Results

Refinement perform a classification of the founded links

(this classification is done by taking the page ranking

given by the search engines and the keywords from the

query and user profile), the XML Generator, as its name

suggest, generates a XML document with the sorted

results and send it to the User Interface Agent, the User

Activity Monitor collects information from the web

browser (these consist in links followed by the user and

where the search process had finish), the Profile

Refinement updates the user profile (this is done by

analysing the visited pages and extracting relevant

keywords for the user).

Web Browser Control (IE 5.0)

New User

Wizard

New Profile

Wizard

Search

Wizard

Results Processing

Query Generator Results refinement XML Generator

Profile refinement

User Activity

Monitor

Agent Factory

Agent Activator

Response Generator User Profile

Search Engine Profile

User Interface Agent

Search Engine Activator Database Storage

Profile Agent

 W W W

Fig.1: SEA overall architecture

Search Engine Activator will decide where to search

the needed information. It selects between several

search engines that are adapted for a specific domain.

Here, the Agent Factory manage the available search

agents (there is an agent who knows how to do an

Internet search and it is cloned for each search engine to

deal with it), the Agent Activator starts the agents,

monitor their search progress and gather the results, and

the Response Generator will filter the founded links (it

deletes duplicate links and may check for death ones).

The Database Storage module handle the user

profiles and the search engine profiles.

Our system is implemented using the Visual C++ 6.0

under Windows environment. As web browser we are

using the Internet Explorer 5.0 (actually only the

WebBrowser Control) because it has integrated parsers

for HTML and XML (Fig. 2). The communication

between the database storage and the other modules is

done using XML documents.

V. CONCLUSIONS AND FUTURE WORK

Although the separated features have been treated

separately by the current approaches, the current trends

impose the need of an osmotic approach able to deal

with heterogeneous resources. Compared with

traditional search engines, SEA promotes a more

anthropocentric orientation, improve data access

capabilities and communication ability. In the future we

will try to automate the degree of interest by measuring

reading time spent by the user. Here, some promising

research was been carried out for similar contexts (Fig.

3). At this time, we work at providing our tool with

collaborative capabilities.

REFERENCES

[1] C. Moers, Zatocoding applied to mechanical

organization of knowledge. American

Documentation, 2: 20-32, 1951.

[2] W.B. Croft, What Do People Want from Information

Retrieval?. D-Lib Magazine, November, 1995.

[3] C.B. Zamfirescu, Agent-based computing for

information retrieval. Technical Report IWAS-

2000-02, Klagenfurt University, Department of

Industrial Informatics, Austria, 2000.

[4] A. Caglayan and C. Harrison. Agent Sourcebook: A

Complete Guide to Desktop, Internet, and Intranet

Agents, Wiley Computer Publishing, 1997.

[5] T. Finin, C. Nicholas, J. Mayfield. Software Agents

for Information Retrieval. Tutorial presented at

ADL'98, 1998.

[6] M. Balabanovic and Y. Shoham. Fab: content-

based, collaborative recommendation; Commun. Of

the ACM 40(3): 66 – 72, 1997.

[7] L.N. Foner. Yenta: A Multi-Agent, Referral Based

Matchmaking System. Proceedings of the First Int.

Conf. on Autonomous Agents, Marina del Rey,

California, ACM Press, 1997.

[8] B. Rhodes and T. Starner. The Remembrance Agent:

a continuously running automated information

retrieval system. Proc. of The First Int. Conf. on

The Practical App. of Intelligent Agents and Multi

Agent Technology, pages 487-495, London, 1996.

[9] H. Lieberman. Autonomous Interface Agents. Proc.

of the ACM Conf. on Computers and Human

Interface, Atlanta, Georgia, ACM Press, 1997.

[10] T. Saracevic, A. Spink, M. Wu. Users and

Intermediaries in Information Retrieval: What Are

They Talking About? Proceedings of the Sixth Int.

Conf. on User Modelling, Vienna, 1997.

[11] N.J. Davis, R. Weeks, M.C. Revett. Information

Agents for the World-Wide Web. In Software

Agents and Soft Computing. Towards Enhancing

Machine Intelligence, Springer Verlag, Berlin,

pages 81-99, 1997.

[12] G. Salton and M.J. McGill. An Introduction to

Modern Information Retrieval, McGraw-Hill, 1983.

[13] D. Harman. Overview of the third Text Retrieval

Conference. In Proceedings of the 3rd Text Retrieval

Conference, Gaithersburg, 1994.

[14] M. Porter. An algorithm for suffix stripping.

Program, 14(3): 130-137, 1980.

[15] M. Pazzani, J. Muramatsu, D. Billus. Syskill &

Webert: Identifying interesting web sites. In

Proceedings of the 13th National Conference on

Artificial Intelligence, Portland, 1996.

[16] C.B. Zamfirescu, M. Staicu, M. Luca. SEA: Search

engine agents. In Proceedings of the Int. Conf.

Beyond 2000, Sibiu, XXIX: 139-144, 1999.

[17] E. Horvitz. Principles of Mixed-Initiative User

Interfaces. In Proceedings of the ACM Int. Conf. on

Computer Human Interaction, ACM Press, 1999.

Fig. 2: SEA interface

0

2

4

6

8

10

0 500 1000 1500 2000

Length of page (bytes)

T
im

e
 s

p
e
n

t
(S

e
c
)

Fig.3: Reading time spent by the user (adapted from [17])

