
Automatic Synthesis of Branch Prediction Schemes through Genetic

Programming

Ciprian Cândea, MSE

Artificial Intelligence Research Group

Reconstructiei Nr. 2A Sibiu, Romania

40 69 22 41 68, ciprianc@airg.verena.ro

Marius Staicu, BEng
Artificial Intelligence Research Group

Reconstructiei Nr. 2A Sibiu, Romania

40 69 22 41 68, mariuss@airg.verena.ro

Lucian N. Vin�an, Professor
University “L. Blaga”, Department of Computer Science

Emil Cioran 4 Sibiu, Romania

40 69 21 27 16, vintan@jupiter.sibiu.ro

Abstract

As processor architectures have increased their reliance on speculative execution to improve

performance, the importance of accurate prediction of what to execute speculatively has

increased. Our approach was to use a simple algebraic-style notation that allows one to

describe branch predictors and also the feedback-process necessary to improve the prediction.

This notation, developed by Joel Emer and Nikolas Gloy at Harvard University, allows the

description of a wide variety of branch predictors in a uniform way. Also this notation

facilitates the use of an efficient search technique called Genetic Programming, which is

loosely modeled on the natural evolutionary process, to explore the design space. We

expanded the initial notation to allow a more detailed description of modern branch

predictors. In this paper we describe our notation version, the modeling system used and the

first results of the application of genetic programming to the design of branch predictors.

Key Words: Branch Prediction, Genetic Programming, Simulation

1. Introduction

Every year it has been ascertained a growth of power for processing with about 50 %

starting with 1990 [1]. However, for current utilization of processors it has been found a growth

of performance’s programs less then reported by producer. This phenomenon appears due to the

problems that limit the execution’s speed of programs and, up to this moment, aren’t completely

removed from the new processors (branches penalties, data hazards, cache misses etc). For

solving this kind of problems (jumps) in this moment the dynamic branch prediction technique is

the most largely used [8].

The first efficient approach in hardware (dynamic) branch prediction consist in Branch

Target Buffer (BTB) structures. BTB is a small associative memory, integrated on chip, that

retains the addresses of the most recently executed branches, their targets and optionally other

information (e.g. target opcode). Due to some intrinsic limitations, BTB’s accuracies are limited

on some benchmarks having unpropitious characteristics (e.g. correlated branches).

In order to improve BTB’s efficiency, Yeh and Patt (1992) and independently Pan et al

(1992) generalized it through a new approach called Two Level Adaptive Branch Prediction.

According to [6], The Two Level Adaptive Branch Prediction uses two distinct levels of branch

history information to make predictions. The first level consists in the History Register (HR),

that contains the last k branches encountered (taken/ not taken) or the last k occurrences of the

same branch instruction. The second level consists in the branch behavior of the last l

occurrences of the specific pattern of these branches. It is implemented by a Pattern History

Table (PHT), that contains essentially the branch prediction automaton (usually 2 bit saturating

counters) [5,6,8].

2. Research methodology

Our approach in order to solve this problem was to search for new branch predictors

using a genetic search method. This idea was taken from Ermer and Gloy work, in this sense

we used a modified BP language proposed by them [1]. This language (BP) is an algebraic-

style branch predictor description based on the observation that every predictor can be divided

in several elementary blocks such – memories, function and numbers (PC etc.).

The actual predictors can be divided into two distinct classes: static and dynamic. In

the case of a static predictor the prediction is always the same logical function. On the other

hand, dynamic predictors learn to make better predictions using information that is only

available after the prediction is made. Dynamic predictors thus use feedback to learn from

past behavior and hence make better predictions in the future. At this moment we can find

new predictor structures, which contains ideas from AI fields like neural predictor [8].

In order for such a feedback control system to learn, it needs some sort of memory. To

provide this memory was defined as a primitive, the structure in Figure 1. This primitive is

basically a memory that is w bits wide and d entries deep. This memory has to type of

operations: predict and update. The predict phase consist in the moment when the memory

is accessed at address index I, and the value read is used as the prediction P. Some time later,

when the prediction resolves, an update value U is delivered to the predictor and written into

the same location indexed by I. In this moment we have implemented and tested two types of

memories: P – a linear memory and A – a full associative memory.

In Figure 1 we presented schematic our memory so we can write that like an algebraic

expression:

P [w, d] (I; U)

Update (U)

d P

 w

Figure 1: Primitive predictor

Index (I)
Prediction (P)

where,

Name Description Type

w Width Static

d Depth Static

i Index for prediction and update Dynamic

u Update value Dynamic

Table 1: Notation used

The static parameters allow us to describe a class of predictors of various sizes with one

definition. The dynamic parameters is turn partitioned between the input arguments, listed first,

and the update arguments, listed after the semicolons (;). Use of this predictors can be thought of

as inputting a series of index (I) and update (U) values and generating a series of predictions (P).

By using specific values or expression as the input to the predictor, we can generate a variety of

predictors. The classical 1 bit predictor can be represented as:

Onebit[d](PC;T) = P[1,d](PC;T)

where,

 PC = current Program Counter (index value) T = branch resolution (update value)

 (0-> not taken, 1 -> taken)

We define the predictor “Onebit” with parameter d, input PC and update values T this predictor

can be parameterized by its depth, d. For example if we choose d, 2048 (2K) we can write:

Onebit[2048](PC;T) = P[1,2048](PC;T)

In the same manner we can build more complex structures. Thus we can define an array

of n-bit saturating counters each of which counts up or down based on their update value.

Counter[n,d](I; T) = P[n,d](I; if T then P+1 else P-1)

The adding and subtraction operations are in this case saturating operations, but we have

tested also the arithmetic one. If we combined this counter with function MSB – which return the

most significant bit of a value we can write:

 Twobit(d)[PC; T) = MSB(Counter[2,d](PC; T)) and respectively

Easily now we can describe other very used primitives: global history.

Hist[w, d](I; V) = P[w, d](I; P CAT V)

CAT represents the concatening function, and we concated the current history value with

the update value. In this moment to describe the well-known branch predictors proposed by Yeh

and Patt [6], so called GAg, PAg and PAp is straightforward.

Gag[n](; T) = Twobit[2n](Hist[n,1](0; T); T) PAg[n, d](PC; T) = Twobit[2n](Hist[n, d](PC; T);T)

and with a simple modification the PAp scheme

PAp[n,m,d](PC; T) = Twobit[2
m

](PC CAT Hist[n,d](PC; T); T)

Our versions of BP language have defined function, memories and terminals. In the next

two tables we presented our functions and terminals.

Function Name Description

MSB Most significant bits

CAT Concatenation

XOR Xor function

MASKHI Most n significant bits

MASKLO Most less n significant bits

SUB Saturating subtraction (0 val. min)

ADD Saturation adding

EQU Equality of tow values

IF If

THEN Then

PLUS Adding

MINUS Subtraction

In our approach we based our automatic search for predictors on Genetic Programming

[2,3]. Genetic programming is derived from Genetic Algorithms that are a method for efficiently

searching extremely large problems spaces.

 A genetic algorithm encodes potential solutions to a given problem as fixed - length

bits. In our representation each bit represents a language atom (function, memory, terminal)

from BP language. To generate the initial population is necessary to create the individual.

Each individual is created using a random algorithm. Individuals are represented by a tree

structure, which is easily translated into a corresponding expression in the BP language.

We evaluate the fitness – prediction accuracy in this case - of each individual by

computing a metric that reflects how well the solution encoded solves problem. This metric

might be the cost of solution, or a measure of how close an individual gets to achieve a

particular task. Next step is to create next generation in the evolutionary process is create new

individuals from old ones by applying genetic operators that recombine the components of

the old individuals in different ways. This process of combining pieces of solutions to form

new solution is one of the key features of genetic algorithms. The other key feature is the way

in which the fitness of an individual influences its propagation in future generations. The

individuals that serve as input to the genetic operations are chosen with a probability based on

their fitness value. Individuals with a higher fitness value have a higher probability of begin

chosen, so that they may appear many more times than individuals of lower fitness value.

This means that the next generation will contain many individuals that contain one or more

components from successful individuals that contain one or more components of the previous

generations, which makes it likely that the average fitness of the new generation will be better

than that of the previous generation. By repeating this process many times, we produce a

sequence of successive generations. Our genetic program mainly consists in the following

steps:

1. Create initial population of randomly generated individuals

2. Rank fitness of individuals in the population by simulation

Terminal

Name

Description

T Taken/Not Taken value read

from trace file (1 bit value)

PC Current program counter

A Refer first A type memory

definition

P Refer first P type memory

definition

0 0

1 1

Table 3: Terminals

Table 2: Functions

3. Apply genetic operations to create new generation

4. If no stop condition (e.g. if user send a stop command) go to step 2

 Genetic operations that we used to populate a new generation are:

1. Integrity check

With this operator we check the integrity (semantically and syntactically) of each

individuals. The most important constraints are:

- The deep of the tree is limited to an initial value (this value can be modified

by user before starting the simulation). Generally, we work with a deep of 10

because our experience shown that many of the predictors that are created do

not use their size efficiently.

- Semantically and syntactically check.

2. Replication

To ensure that the very best individuals of a generation are not lost or destroyed by other

operation, we copy the selected (with fitness rate) individuals to the next generation.

3. Crossover

Is the most operation it combines the components of two predictors in different ways to

form two new predictors. To perform a crossover operation on two individuals our

program randomly chooses a node in each of the two, and exchange the sub-trees defined

by the two nodes.

4. Mutation

For a node mutation program randomly choose a node within the expression tree of the

individual and modify the node in the next manner: If it is a function node will be

replaced with a different function. If it is a terminal node will be changed with other

terminal.

In this phase of research as a fitness rate we use the prediction accuracy divided to the

number of instruction simulated obtained by predictors for each simulation trace. For simulation

we use the Stanford HSA (Hatfield Superscalar Architecture) traces, developed at the University

of Hertfordshire, UK [7].

In the next section we describe our tools and few implementation idea of search

technique used by us.

3. Implementation structures

The Branch Prediction Language (BPL) was developed in order to allow the generic

description of any branch predictor. At AIRG Ltd. (“Artificial Intelligence Research Group”)

Sibiu, RO, we extended this language to make it more flexible. The apparition of a new

memory type, an associative one, represents the biggest modification. The original BPL has

only an operative memory but much of the modern branch predictors are using associative

memories to store their data. This memory type can be simulated using the linear memory, the

available operators (IF-THEN-ELSE, EQU) and an iteration operator, but the performances

would be lowest than using a genuine one. At this moment, this memory is ‘full-associative’

but in the future, if required, it can be made ‘n-way set associative’.

 We have designed and implemented several tools to automate as much as possible of

the simulation and the analyze process. These tools and the relationships between them are

showed in the figure 2.

The Branch Predictor Generator is the heart of the whole system. It generates the

genetic predictor schemes, passes them to the simulator, receives the prediction rates and stores

the results in the Data Storage module for future analyses.

In the first generation we include some classic Two Level Adaptive Branch Predictors

that were taken from configuration file [5,6]. The graphical interface allows us to customize

the simulators IP addresses (see below), generation numbers, and predictors’ number in a

generation, the fitness rate, the predictor’s general complexity (it is represented as a binary

tree). Once started, the simulation (which take place in parallel on several computers) can be

paused saved and resumed later or canceled.

The Simulator is used to verify the predictor behavior. It receives a predictor from the

generator and the corresponding HSA trace file used in simulation and returns the prediction

rate. If the predictor can’t be simulated it will return 0. As an implementation detail, the

predictor is received (TCP/IP) as a text string and is parsed in a binary tree. Each node

represents an operator (MSB, MINUS, XOR…), a memory (P or A) or a terminal (T, PC or

number). The node value is used in its parents as input arguments or, in the case of the root; it

represents the predicted value (taken or not taken). If the node codes an operator the two

children are the operator arguments and their value are obtained by evaluating the two

branches. If the node codes a memory (linear or associative) the left branch represents the

address in the memory space (the direct mapped address for linear memory, or the tag for

associative memory) and the right branch represents the value that will update the memory.

For each line in the trace files the simulator performs two basic operations: the evaluation and

the update of the predictor. In the evaluation phase the predictor’s memory address is

obtained and the memory value is used to make a prediction; in the update phase the value at

the previous calculated address is modified according with the update value. The prediction

(taken/not taken) is compared with the effective value obtained from the trace file and we can

see if the prediction is correct or wrong. The total number of correct predicted jumps divided

by the total jumps represents the prediction rate (fitness rate) that is returned to the predictor

generator.

The Data Storage is used to memorize the generated predictors and their prediction

rate for future analyses. The Predictor Viewer and Result Viewer use them.

The Predictor Viewer is a tool that converts the predictor from a string, as generated

by the predictor generator module, to a graphical form showed as a binary tree. It can be used

as a stand-alone application that take the predictor from the user in a dialog box, or as an

integrated tool that take the predictor from the Data Storage module. For now the viewer

Branch

Predictor
Generator

Simulator

Data

Result

Viewer

Predictor

Viewer

TCP/IP

Figure 2: General System Structure

shows only a raw structure of the predictor. In the future we think it would be possible to

make it able to recognize standard portions (i.e. a local history memory or a circular register)

and replace them with symbols in the general picture. This will led to a major simplification

of the graphic and will facilitate a better predictor structure understanding.

The Result Viewer module is used to show general information about the generated

predictors and simulation results. There are several options (you can select the generation, the

prediction rate, trace file used etc.) for filtering the information. Also, you can select

individual predictors and display them in the predictor viewer.

Because the genetic search is a slow process we use a parallel search (simulation) in a

distributed environment across several computers (client-server architecture). The Branch

Prediction Generator acts as a client for the servers (the simulator module) that run on

different computers. The communication between the client and the servers use an in-house

protocol build over the TCP/IP. For now the client must know in advance the server number

in the system and their IP address. In the future it may be possible to allow a server to

attach/detach dynamically to/from the system. Another idea is to have two-three clients that

can share information and use the Internet to communicate. In our simulation we used 3

computers PIII at 550Mhz 128Mb RAM with Windows 2000.

4. Obtained Results

For moment we tested only the branch prediction case. In our tests we try to find some

new predictors type or new useful ideas. This is a very difficult slowly process because for

many years the branch predictors were designed by human researchers. We started with a

population of 400 chromosomes. In these populations 6 were classic predictors like those

presented in Table 4 (right) and the rest where randomly generated. For each generation we

kept all the predictors, which have a prediction rate greater than a user defined threshold and

use them to derive the next generation.

In Table 4 we published the results obtained by simulating 5 classical predictors,

which are usually found in modern processors. The prediction rate is computed as the

arithmetical mean of the rates obtained from the simulation of predictors on all available

traces. Table 5 shows the results from the simulation of the best predictors founded by our

system. These predictors where founded starting with the 5th generation.

As it can be observed, the rates in the two tables are about the same. This means that

the automatic generated predictors are quite similar from the performance point of view with

the human-designed ones. We should add that our crossover operator isn't so efficient yet. We

have noticed that, in our opinion, only after at least 10 generation it begins to appear

chromosomes with a somewhat improved prediction rate [1]. Until now, because it takes a

long time to simulate 10 full generations we didn't pass this boundary. On our systems the

simulation of one chromosome take between 15 and 100 seconds, depending on its

complexity and on the trace dimensions, with an average of 60 seconds. It takes around 12

hours to simulate a population of 400 chromosomes. The available resources don't allow us at

this moment to continue the simulations for more generations and with a larger population.

We’ll focus on improving the genetic operators and the simulation techniques in order to

improve the simulator performance and decrease the simulation time.

Based on the obtained results we can conclude that our developed method is feasible.

We think it is necessary to grow the analyzed generation numbers and to use other, more

complex, trace files (our trace files have an instruction address space of about 300 32-bit

words).

5. Conclusion and Further Work

In this paper, we have presented our work based on some improvements of the BP

language proposed by Ermer and Gloy [1] and the related developed tools used. Using this

language we can describe a variety of predictors and also manipulate them very easy. We also

repeated the experiments based on automatic search for branch prediction schemes using

Genetic Programming concepts. The first results point out that the predictors created

automatically are directly comparable with the “hand made” branch predictors used today, but

they are more complex and, as a consequence, probably difficult for being practical

implemented. On the other hand, it would be possible to find some interesting new ideas

useful in human designed branch predictors. In the nearest future we intend to extend our

tools but also we’ll try to extend the language with other components. These search

techniques we’ll try to adapt in order to find other types of predictors like predictors for

indirect jumps. Anyway, we think it would be possible to discover some very efficient genetic

predictors.

These first positive results obtained let us think that opportunity to find the new viable

structures is very height, besides improvement and adding of other genetic operators and,

eventual the development of an algorithm for reduce the complexity.

6. References

[1] Ermer, J. and Gloy N.: “A Language for Describing Predictors and its Application to

 Automatic Synthesis”, Int’l Symp. On Comp. Architecture, ISCA ’97, 1997.

[2] Holland, J.H.: “Adaption in Natural and Artificial Systems”, University of Michigan Press,

 1975.

[3] Koza, J.R.: “Genetic Programming”, MIT Press, 1992.

[4] Sechrest, S., Lee, C-C and Mudge, T.: ”The Role of Adaptivity in Two-level Adaptive

Branch Prediction”, 28
th

 ACM / IEEE International Symposium on Microarchitecture,

November, 1995.

[5] Yeh T.-Y. and Patt Y.N.: “Two-Level Adaptive Branch Prediction”, 24
th

 ACM / IEEE

 International Symposium on Microarchitecture, November, 1991.

[6] Yeh T.-Y. and Patt Y.N.: “Alternative Implementation of Two-Level Adaptive Branch

Prediction”, 19
th

 Annual International Symposium on Computer Science, May 1995.

[7] Steven G.: “A Superscalar Architecture to Exploit Instruction Level Parallelism”,

Microprocessors and Microsystems, No 7, 1997.

[8] Vintan, L.: “Instruction Level Parallel Architectures” (in Romanian), ISBN 973-27-

0734-8, Romanian Academy Publishing House, Bucharest, 2000.

Predictor Rate

(mean)

MSB(MASKHI(ADD(A[23,64](0;T);A[1,128](P

C;PC));0))

0.711

MSB(EQU(MSB(MASKHI(ADD(IF(XOR(0;1);

THEN(PC;PC));SUB(MSB(A[22,64](1;1));MAS

KLO(0;EQU(PC;PC))));PC));0))

0.759

MSB(EQU(XOR(SUB(MINUS(0;1);IF(ADD(A[

31,64](A;PC);1);THEN(1;PC)));EQU(PC;PC));A

DD(A[24,32](0;1);MASKHI(MSB(1);PC))))

0.811

Predictor Rate
(mean)

Onebit[1,2K] 0.664

Twobit[2,64K] 0.746

GAg[2] 0.849

PAg[18,8K] 0.825

PAp[9,18,8K] 0.771

Table 4: Branch Predictor

Performance

