

SEA: SEARCH ENGINE AGENTS

Constantin B. ZAMFIRESCU* **, Marius STAICU*, Mihai LUCA*

*AI Research Group
2A Reconstruc�iei Street 2400 Sibiu, ROMANIA

Phone/ Fax: +40-69-224168 E-mail: trident@sibnet.ro
**”Lucian Blaga” University of Sibiu

Dept. of Computer Science and Automatic Control, 4 Emil Cioran Sreet 2400 Sibiu, ROMANIA
Phone: +40-69-422424 Fax: +40-69-212716 E-mail: zbc@acm.org

Abstract: The Web is a disorganized place, and it is growing more disorganized every day. Even with the state-of-the-

art indexing systems, web catalogs, and soft-bots, World-Wide Web users are finding it increasingly difficult to gather

information relevant to their interests without considerable and often fruitless searching. Following an agent-oriented

approach, the research in this paper aims at addressing such circumstances in a more comprehensive framework, able to

extend our results to other interrelated challenges. Usually settled in the information retrieval (IR) research field, as a

continuously confrontation with today’s globalisation trends, some relevant issues together with some effective methods

to address them are identified and discussed. How our application will tackle them, is the main question that this paper

will tring to answer.

Keywords: agent-orientation, adaptivity, user-friendliness, information management, search engine, WWW.

1. Introduction

When, at the begining of 1950’s, Calvin Moers,

one of the information science pioneers, coined the term

information retrieval (IR) he also defined the problems

addressed by the activity: (1) How to represent and

organize information intellectually? (2) How to specify

a search intellectualy? and (3) What systems and

techniques to use for those processes?[1]. The problem

underlying all of theoretical, experimental, and

empirical activities in user modeling revolves around the

classic and most dofficult question [2]: What it is

important to know about the user in order to support the

user in interaction with the IR system? Accordingly to

Maglio and Barret [3], developing an explicite model of

a user’s information need addresses the folowing issues:

1) What kind of support should this model give?

a) Improving precision (the system can add other

terms in the query from the user to cover the context of

its meaning). This can improve the percentage of

relevant retrieved documents.

b) Improving information need coverage. The

concepts conveyed by a user query express a vague

information need. Expanding this concepts will make it

more likely that every aspects of this information need is

captured.

c) Pointing the user to relevant information. The

system may expand and search for these expansions

autonomously.

2) What aspects of an information need should be

represented? A distinction can be made between topics

of interest and situational factors. The first term refers

to the concepts which are part of the information need.

The latter provides a context for a specific information

need, for instance, the type of knowledge requested or

the background knowledge of the user.

3) How to infer aspects of an information need? If not

provided directly by the user, these aspects should be

estimated from other sources. Some considered sources

of information are:

a) Document read by the user. The system can

monitor the user’s browsing through the World-Wide

Web. Acceptance of a document by the user can be

measured explicitely, by an option in the interface, or

implicitely by measuring reading time.

b) Clicking behaviour. This can be used, for instance,

to estimate the user’s browsing strategy or reading

capacity.

4) How to deal with the ambiguity of the actions of

the user in regard to the estimation of the information

need? Because of this ambiguity, the system should

have a way to deal with conflicting hypotheses. As

possible formalism, fuzzy logic and Bayesian networks

can be considered.

Consequently, to undertake all kinds of such questions

our implementation (SEA) should support the following

issues: (1) assist the user in the diagnosis process and

question reformulation; (2) select appropriate search

engine for efficient searching accordingly to their

profiles; (3) translate the question into one or more

queries and search strategies acceptable to the given

search engine; (4) manage searching strategy; (5)

support the user in the results assessment; (6) provide

the user with the appropriate outputs in a suitable

structure; and, way not, (7) advice he or she in the

follow-up activity.

The remainder of this paper is organised as follows.

Section 2 summarises the rationale of SEA architecture.

The third section will present some detailed

implementation issues regarding SEA agent-oriented

approach. Some related works in the IR field are given

in the section 4. Finally, our remarks and future path

will establish the framework that will be here to stay, if

not in intention, at least in today’s manner of dealing

with information tension.

2. Architectural issues

Over the last few years, there has been increasing

interest in intelligent agents, distributed artificial

intelligence and distributed systems. Links this with the

increasing focus on IR systems and co-operative work

patterns, raises the issues of how these "distributed

cognition" [4] capabilities can be integrated to create

intelligent tools.

The MAS paradigm represents one of the most

promising approaches to build complex and flexible new

architectures required for next generation of intelligent

tools offering a new dimension for large-scale

integration. MAS are software systems composed of

several autonomous software agents running in a

distributed environment. Beside the local goals of each

agent, global objectives are established committing all

or some group of agents to their completion. Some

advantage of this approaches are: it is a natural way for

controlling the complexity of large, highly distributed

systems; it allows the construction of scalable systems

since the addition of more agents is a easy task; MAS

are potentially more robust and fault-tolerant than

centralised systems.

An important role for agents may be the delegation of

tasks. Agents interact and negotiate with each other to

determine a suitable contracting agent. The contract net

model [5] provides a suitable general protocol to design

and implement this negotiation process.

The MAS provides a platform for co-ordination and

co-operation, within which its agents can work

collectively to solve specific problems. Clusters or

teams of agents are identified [6] to perform specific

reasoning for a given task and decision-making

responsibilities are delegated to co-ordination groups

made up of these agents. After all, if we don't expect

people to be omnipotent, why should we expect this

from agents?

A more detailed description of the agentcy features

are given in [7, 8] and in a related paper A3CKM:

Anthropocentrical Agent Architecture for Complex

Knowledge Management.

2.1. User modelling

Accordingly to (Saracevic, Spink and Wu, 1997),

approaches to user modelling in IR can be divided in

two main category: system-centered and human-

centered. While the first put emphasis on relevance

feedback (users are modeled through texts or clusters of

texts) and query expansion (the initial or modified query

is used as a basis for user modeling), the second take

into account question shape (user modeling is

accomplished through various interview and analysis

techiques) (Harter, 1992; Redford, 1996) and user’s

cognitive aspects (Allen, 1996). Another method is to

build into the system ways and means by which users

can on their own model articulate their problem with the

system’s assistance.

On the user side we can model cognitive, affective

and situational levels. Saracevic et al [17] suggest that

user modeling is an interactive process that proceeds in

a dynamic way at different levels trying to capture user’s

cognitive, situational, affective and possible other

elements that bear upon efectiveness of retrieval (See

Figure 1).

In such a framework the request must be scrutinized

through all its related steps: from request formulation to

answer acceptance. So, in a searching process can be

delineated three key stages: request formulation,

retrieved pages selection and locating the intended

information.

2.1.1. Profile enhancement

Keywords occurring in a particular searching process

 (e.g. source description, contextual links) will be

clustered using a similarity matrix for the keywords

stored in the user profile, very similar with the approach

Situational tasks

Affective intent

Cognitive beliefs

Query

characteristics

Figure1. IR interaction

followed by Davis, Weeks and Revett [9] in their Jasper

implementation. Contrasting with them, we look at the

search process as a whole, instead of the pages stored in

the ultimate part of the user’s request. We capture the

user’s choice, the rational behind each of them, the open

questions related to the request, the assumption behind

it, and any related supporting information. The matrix

used, will give us a measure of the ‘similarity’ of

keywords in the user’s profile. For two keywords Ki and

Kj, the Dice coefficient is given by:

 2 X �Ki � Kj� / �Ki� + �Kj�

Once the similarity matrix is calculated it is exploited

in two ways: (1) profile enhancement (adding those

keywords most similar to the keywords explicitly

represented in the user’s profile in similar way of query

reformulation techniques) and (2) proactive searching

(search proactively for new WWW pages relevant to

user’s interest). The algorithm is straightforward – given

an initial starting keyword, find the n. Link this n to the

original word and repeat the process for each n new

words a number of m times.

If complete-link clustering is used [9], whereby the

similarity between the least similar pair of items from

two clusters is taken as the similarity between the

clusters, the cluster dendogram is obtained. A similarity

threshold can be set to provide the similarity degree

between the clusters.

2.1.2. Adaptive recommendation

Accordingly to Balanovic [10] for the content-based

approach, there are four essential requirements:

w – A representation of a Web page.

m – A representation of the user’s interests.

p(w, m) – A function to determine the pertinence of a

Web page given a user’s interest

u(w, m, s) – A function returning an updated user

profile given the user’s feedback s on a page w.

The assumption underlying content-based systems is

that the content of a page is what establish the user’s

interest. Going on, we make the further assumption that

we can represent the content of a page purely by

considering the words contained in the text and also by

its description.

Considering the vector-space model of IR [11] as a

suitable mechanism for documents based representation,

documents and queries are represented as vectors. This

model has been used and studied extensively, forms that

basis for commercial Web search systems and has been

shown to be competitive with alternative IR methods

[12].

In this model, we assume some dictionary vector d,

where each element di is a word. Each document then

has a vector w, where element wi is the weight of a word

di for that document. If the document does not contain

di, then wi=0.

As in Fab implementation [10], in our formulation we

reduce words to their steams using the Porter algorithm

[13]. That will ignore words from a standard stop list of

571 words, and calculate a TFIDF weight: the weight wi

of a word di in a document W is given by:

wi = (0.5 + 0.5 tf(i) / tfmax) (log (n / df(i)))

where tf(i) is the number of times word di appears in

Figure 2. SEA overall architecture

Agent

Generator

Interface

agent

Agents

Library

Search

engine

profiles

User’s

profiles

F

I

L

T

E

R

S

W

W

W

GoTo

…….

…….

Excite

Excite

…….

…….

GoTo

document W (the term frequency), df(i) is the number of

documents in the collection which contain di (the

document frequency), n is the number of documents in

the collection and tfmax is the maximum term frequency

over all words W.

To avoid over-frittering, accordingly to experiments

described in [14], the optimum of used words is between

30 and 100. In our implementation, because the

algorithm is used especially for recommendation based

on the page’s description and not for the content of the

page itself, a range between 20 and 50 is sufficient.

Once the top approximately 30 words have been picked

we normalize w to be of unit length, to allow

comparisons between documents of different lengths.

The vector representation is then used both for pages

recommendation, and for the model of the user’s

interests. In order to measure how well a page w

matches a profile m, we use a variant of standard IR

cosine measure:

p(w, m) = q(w) * m

where the function q(w) return the similarity measure

accordingly to the profile described in the above section.

Updating m also corresponds to a normal operation in

retrospective IR. We use a simple update rule:

u(w, m, s) = m + z(t) w

where z(t) is the user’s implicit score for page w in the

selecting process

2.2. Information retrieval system

The chief intent of HTML and HTTP is to assist user-

level presentation and navigation of the Internet.

Automated search or sophisticated knowledge gathering

has been a much lower priority. Given this emphasis,

relatively few mechanisms have been established to

mark up documents with useful semantics information

beyond document-oriented information like “abstract”

or “table of contents”. As a result, most common

indexing mechanism and agents robots for the WWW

have generally fallen into one of three categories: (1)

text-indexing engines; (2) catalogs painstakingly built by

hand; and (3) private robots using ad-hoc methods to

gather limited semantic information about page.

Each approach has disadvantage. Text indices suffer

because they associate the semantic meaning of web

pages with actual lexical or syntactic content. Although

text indices are improving, the amount of information on

the Web is also growing rapidly. A major disadvantage

of hand-build catalogs is the man-hours required to

construct them. Given the size of the WWW, and the

rate at which it is growing, cataloging even a modest

procentage of web pages is a difficult task. Ad-hoc

robots that attempt to gather semantic information from

the web typically gather only the limited semantic

information inferable from existing HTML tags. The

current state of natural language processing technology

makes it difficult to infer much semantic meaning from

the body text itself at resonable rate.

In our implementation, the agent generator is based on

the agent-based blackboard approaches (see Figure 3).

As Vranej and Stanojevic [15] observes, the blackboard

framework adopted here, is a promising choice for the

co-ordination mechanism of multiple knowledge

representations and reason techniques in multiparadigm

system. It bridge the knowledge gap among those agents

whose capabilities are restricted to a local area of

expertise, facilitating the gathering of search-agents into

collaborative groups or clusters and coordinating their

decision-making. On the other hand, agent generator

operate as a meta-level agent to increase cooperation

between search-engine agents that are somehow

replications of a general architecture for the search

engine agents class (clone agents). Taken into account

the resources profiles (serach engines), the clone agents

reprezent the corresponding resource agent in

concurrent IR activities.

2.3. SEA overall architecture

In the Figure 2, are represented the most important

elements of the SEA architecture. As can be seen, to

achieve its goals, it use significantly an agent-oriented

approach.

Interface agent determines, constructs and maintains

the user’s profile (initially built on some relevant

question relevant to the user interests). It also take the

request from the user and sent it in a propper shape via

filters module to agent generator who realize the

interface with the information sources. Moreover,

interface agent will continuously monitor the user

actions and try to gather more dates about him/her

(interest domains, frequently accessed pages, process in

finding the required information) so that on a new

demand to be able to personalize better the response (the

order in which will present gathered information based

on how frequently they are visited, new addresses who

may be of some interest and so on).

�	
��

����

����
�����

����� !"#

$%&'(

)*+,-.

/0123

456789:

;<=>?

@ABCDEF

GHIJKLMNOP

Q
RS
T
U
V
W
X
Y
Z

[\]^_` abcdefg

Figure 3. The blackboard architecture

Filters make an intelligent filtering (deleting duplicate

links, local links, advertising link, dead links etc.) on the

received data and try to adapt it accoordingly to the user

‘s profile and technological environment, respectively.

Agent generator module control the search agents

activation. For each search engine it will launch a

specific search agent who send the query and receive the

answers from the particular search engine. These

answers are filtered and found addresses are passed to

the filtration module who accordingly to the user’s

profile will select the desired information.

For each available search engine implement there is a

dedicated agent who know how to format the query and

which are the possible answers that it will can obtain.

The answers are bring to a canonical form and are send

to the agent generator. It gather all the obtained response

and pass them to the filtering module.

Resources are made up from “traditional” categories:

data base, knowledge base, model base and agents

library, providing the capability to create, update, store,

recall, operate and control component units.

3. Implementation issues

At this time, the program is divided into two modules

(one who realize the interface with the user and another

who handle the data) [16]. These modules

communicating through TCP/IP, allow an easy

transformation, an independence on the graphical

platform used (Windows, Xwindow) and make possible

to exploit the search module from another program if

this implements the established communication

protocol.

The user interface module take over the demands and

show the answers. This module is available in two forms

: as a stand-alone program or as a Java applet which

may be integrated in a Web browser (and providing

WBI - Web Browser Intelligence). The demands are

forwarded to the search module together with the

addresses of the search engines on which the search

must occurs. The user has the possibility to set the

engines that ought to be used to retrieve the needed

information. For each known engine in the search

module there is a specialized agent. If it is necessary to

add a new engine you need simply to clone a specific

agent. Because the search module is written in Java it is

easy to add new agents which will be loaded

dynamically. In the GUI it is integrated an interface

agent with multiple functions. Firstly it keep and

develop the user’s profile in order to take better decision

regarding the quality of the information presented. For

each user, the interface agent will observe how, when

and in what context the information are used (which are

the first address visited, which are the addresses visited

frequently and so on). The interface agent can use a

direct feedback from the user : he can say if the search

was good and how interesting are the founded

information. All these information will be used in order

to enhance the user’s profile.

4. Related works

At this time SEA is an example of a IR MAS,

helping the user manage the “information overload”

problem often wencounterd when using a WWW. The

services provided by existing information search tools

on the Internet can be devided into four main functions:

search, storage, access aand organisation. There are

many systems which offer some or all of these to the

WWW user, including WAIS, Archie, the Harvest

system and Jasper [9]. Divergent with them, we look at

the search process as a whole, instead of the pages

stored in the ultimate part of the user’s request. We

capture the user’s choice, the rational behind each of

them, the open questions related to the request, the

assumption behind it, and any related supporting

information.

As Gori et al [17] in their implementation, to provide

a usable interface, we considered both a vocal device

based on the simplest sounds that can be emitted clearly

and a system to aid user interaction by means of

prediction. Contrasting with them, our predictions are

process-based and context-situated, not merely a

statistical one. Moreover, predictions are somehow

meta-informative and not situated in the on hand

appealing page.

5. Conclusions

Although the separated features of the SEA have been

treated separately by the current approaches, the trends

of economical environment impose the need of an

osmotic approach able to deal with heterogeneous

resources. Compared with traditional search engines,

SEA promotes a more anthropocentric orientation,

improve data access capabilities and communication

ability. Compared with older approaches, it greatly

enhances the IR effectiveness on the Web, reaches more

extensive problem domains, more component problem-

solving capability. To carry out these functions, three

kinds of knowledge are identified that SEA have to deal

with: user’s cognitive, situational, affective and possible

other elements that bear upon efectiveness of retrieval

[18].

Figure 4. SEA Interface agent

7. References

1. Moers, C. (1951). Zatocoding applied to
mechanical organization of knowledge. American

Documentation, 2, p. 20-32.

2. Belkin, N.J., C. Cool, Acest Stein and U. Thiel
(1995). Cases, scripts, and information seeking

strategies: On the design of intercative information
retrieval system. Expert Systems with Applications,

9, p. 379-395.

3. Maglio, P.P. and R. Barret (1997). How to buil
Modeling Agents to Support Web Searchers. In A.
Jameson, C. Paris and C. Tasso (Eds.), User

Modeling: Proceedings of the Sixth International

Conference, UM97, Vienna, New York: Springer
Wien New York.

4. Hutchins, E. (1990). The Technology of Team

Navigation. In J. Galagher, R. Kraut, and C. Egido

(Eds.). Intellectual Teamwork, Erlbaum, NewJersey.

5. Maturana, F.P., D.H. Norrie (1997). Distributed

decision-making using the contract net within

mediator architecture. Decision Support Systems,

Vol. 20, p. 53-64.

6. Carley, K.M., Z. Lin (1995). Organisational designs

suited to high performance under stress. IEEE

Transations on Systems, Man and Cybernetics,

25(2), p. 221-230.

7. Zamfirescu, C.B. and F.G. Filip (1999). An agent-

oriented approach to team-based manufacturing

systems. In: H. Van Brussel and P. Valckenaers

(Eds.). Proceedings of the Second International

Workshop on Intelligent Manufacturing Systems,

Katholieke Universiteit Leuven Press, Belgium, p.

651-658.

8. Stone, P. and M. Veloso (1997). Multiagent Systems:

A Survey from a Machine Learning Perspective.
Carnegie Mellon University, Pittsburgh, PA

9. Davis, N.J., R. Weeks and M.C. Revett (1997).

Information Agents for the World-Wide Web. In

H.S. Nwana and N. Azarmi (Eds.), Software Agents

and Soft Computing. Towards Enhancing Machine

Intelligence, Springer Verlag, Berlin, p. 81-99.

10. Balanovic, M. (1997). An adaptive Web Page

Recomandation Service. In Proceedings of Agent

Autonomous Agents, ACM Press, Marina Del Rey,

California USA, p. 378-385.

11. Salton, G. And M.J. McGill (1983). An Introduction

to Modern Information Retrieval, McGraw-Hill.

12. Harman, D. (1994). Overview of the third Text

Retrieval Conference (TREC-3). In Proceedings of

the 3
rd

 Text Retrieval Conference, Gaithersburg,

MD.

13. Porter, M. (1980). An algorithm for suffix stripping.

Program, 14(3), proces 130-137.

14. Pazzani, M., J. Muramatsu, and D. Billus (1996).

Syskill & Webert: Identifying interesting web sites.

In Proceedings of the 13
th

 National Conference on

Artificial Intelligence, Portland, OR.

15.Vranej, S., M. Stanojevic (1995). Integrating

multiple paradigms within the blackboard

framework. IEEE Transactions on Software

Engineering, 21(3), pp. 244-262.

16. Pallmann, D. (1999). Programming Bots, Spiders,

and Intelligent Agents in Microsoft Visual C++.
Microsoft Press, Redmond, WA.

17. Gori, M, M. Maggini and E. Martinelli (1997).

Web-Browser Through Voice Input and Page

Interest Prediction. In A. Jameson, C. Paris and C.

Tasso (Eds.), User Modeling: Proceedings of the

Sixth International Conference, UM97, Vienna,

New York: Springer Wien New York.

18. Saracevic, T., A. Spink and M.M. Wu (1997). Users

and Intermediaries in Information Retrieval: What

Are They Talking About? In A. Jameson, C. Paris

and C. Tasso (Eds.), User Modeling: Proceedings of

the Sixth International Conference, UM97, Vienna,

New York: Springer Wien New York.

