
HOLONS AND AGENTS IN ROBOTIC TEAMS. A SYNERGISTIC APPROACH.

Boldur BARBAT1, Ciprian CANDEA2 and Constantin ZAMFIRESCU1
1”Lucian Blaga” University of Sibiu, Dept. of Computer Science

4 Emil Cioran St., 2400 Sibiu, Romania

E-mail: bbarbat@sibnet.ro Phone: +40-69-217928 Fax: +40-69-212716
2Artificial Intelligence Research Group Sibiu

Reconstructiei Nr. 2A, 2400, Sibiu, Romania

E-mail: ciprianc@airg.verena.ro Phone: +40-69-224168

Abstract

Although established as wide-ranging trends in IT,

some paradigms are not yet as pervasive, diversified,

and – most of all – integrated (in both senses:

incorporated as well as intertwined) in real-time control

systems, as they should be. The paper considers three of

them: a) agent-orientation – particularly, multi-agent

systems (MAS) [10]; b) holonic approach to ma-

nufacturing systems [6]; c) coarse-grain parallelism [7]

[11]. The state of the art in these fields is elaborated

upon passing it through a threefold filter regarding real-

time applications: high complexity, vital robustness, and

critical response time.

1. Introduction

On the other hand, robotic soccer (RoboCup)

proved itself as an outstanding test bed for innovative

approaches. In implementing teams for RoboCup, MAS

are widely used [8] [9]; moreover, a holonic-like

approach has been recently proposed too [3]. Thus,

while preparing a new team for the RoboCup

competition, simulated soccer (RoboCup environment)

is an adequate test bench for joining the two paradigms.

As well, it let us use as “benchmarks” games played

against our own team, exercised in 1999 in Stockholm

[2].

2. Rational

Why agents? The paper supports the assertions

that: a) MAS are crucial for robotic teams because,

besides the individual goal of each agent, global

objectives are established committing all or some agent

groups to their completion; b) generic agent

architectures like that proposed in [1] allow easy

instantiation for similar – but distinct – entities, such as

the players are (or should be); c) MAS are the natural

means to design and implement holonic software sys-

tems [4] as well as a lot of related kinds of applications

[14] offering the conceptual tools to tackle their

complexity (decomposition, abstraction and

organization) [N2]; d) MAS are also used in

heterarchical control, and provide the software with

opportunities for taking the initiative to take

autonomous decisions.

Why holons? Starting from the fact that Holonic

Manufacturing Systems (HMS) were set up as a new

approach to the manufacturing control problem [13], the

paper defends, among others, that:

a) Because of one of the main weaknesses of MAS

– the practical impossibility to deal with more than two

levels (the agent and the system) – the holonic paradigm

allows better modelling of multilevel systems (including

the player-team-coach ensemble).

b) It increases also the flexibility of decisional

systems (as both HMS and robotic teams); indeed, a

“holarchy” is “a hierarchy of self-regulating control

building blocks (holons), which function (i) as

autonomous wholes in supra-ordination to their parts,

(ii) as dependent parts in subordination to controls on
higher levels, (iii) in co-ordination with their local

environment.” [7].

c) One of the most important characteristics of

holarchies is the capacity to modify themselves, i.e. to

create temporary hierarchies [5] (like modern industry,

soccer is very dynamic: not only that each team comes

with its own style and game strategy, but also each game

phase has a dose of novelty).

d) Holarchies offer a balance between the two usual

approaches to the guided process: the hierarchical

control (fixed, static, pre-established) and the

heterarchical one (autonomous, decentralized, flexible).

e) Holons specialization and aggregation offer a

great flexibility in testing the system at different levels

of details during the fine-tuned phases. Aggregated

holons are defined as a set of related holons that are

clustered together and form in their turn a bigger holon

with its own identity, so holons may belong to multiple

aggregations at the same time. Aggregated holons can

dynamically change their contents depending on

particular needs of the system (they may even emerge

out of the self-organising interaction of holons).

As regards the third paradigm, after proposing to

assign semantic value to some concurrent programming

concepts (e.g., priorities), in order to enhance both

flexibility and speed, the paper explains why, at this

research stage, such mechanisms are only barely

applied.

3. Architectural issues

Approach. Our idea is inspired by the PROSA

architecture developed at PMA/KLeuven as a reference

model for Holonic Manufacturing Systems [13]. The

acronym PROSA came from Product-Resource-Order-

Staff Architecture, the holon types used. The resource

holon contains a physical part namely a production

resource of the manufacturing system, and an

information processing part that controls the resource.

The product holon holds the process and production

knowledge to assure the correct making of the product

with sufficient quality. The order holon represents a task

in the manufacturing system. It is responsible for

performing the assigned work correctly and on time. The

staff holon is implemented in the idea to assist the other

three holons in performing their work.

Based on this architecture we propose a similar

approach for robotic teams (see Table 1, intended rather

as a suggestion, than as a full chart). The holarchy is

structured on five levels (RoboCup, Coach, Team,

Player, Component), each of them containing the

specific holons (Product, Resource, Order, Staff). Their

role, functionality and cooperation mechanisms are

described and discussed in the RoboCup context. A

more detailed description is given in [3].

Holarchy Levels

 RoboCup Coach Team Player Component

Product

▪ Championship

▪ Workshops, etc.

▪ Selection

▪ Training

▪ Strategies

▪ Tactics

▪ Game

▪ Skills acquired

▪ Tactics learned

▪ Implemented

strategies

▪ Implemented

tactics

▪ Applied

skills

Resource ▪ Organisational

▪ Technical

▪ Financial

▪ Strategies

▪ Tactics

▪ Experience

▪ Rules

▪ Time

▪ Information

▪ Schemata

▪ Skill

▪ Schemata

▪ Stamina

▪ Components

▪ Head

▪ Right leg

▪ Left leg

Order ▪ Research

▪ Entertainment

▪ Building teams

▪ Testing teams

▪ Winning

championships

▪ Win game ▪ Fulfil role

▪ Preservation

▪ Learn

▪ Execute

Staff ▪ All individuals

involved

▪ Players

▪ Teams

▪ Spare players

To be adapted Not

applicable

Since MAS are the natural means to design and

implement holonic software systems, a generic holon

architecture is conceptualised and implemented as a

three-layer agent architecture (i.e. holarchy, deliberative

and reactive layer, respectively). The holarchy layer

includes mechanisms for devising joint plans with other

Table 1. Holon-like approach for robotic teams

holons/agents. To achieve the needed flexibility it was

divided in three sub-layers: (i) integration (for vertical

collaboration with adjacent layers, e.g., a holon/agent

situated at the team layer shall collaborate with other

holons/agents situated at the coach and/or player levels);

(ii) cooperation (for horizontal integration of entities

situated at the same level); and (iii) monitoring (for

modifying the holarchy). The deliberative layer includes

mechanisms able to deal with local plans and local

goals. Finally, the reactive layer includes facts

representing the world model as well as primitive if-then

rules.

Holarchy

Layer

Deliberative

Layer

Reactive

Layer

Cooperative Knowledge

Planning Knowledge

World Model

Acting Communication Perception

E N V I R O N M E N T

Level n+1 Level n-1

Level n

In spite of their usefulness in the earlier development

stages (e.g., conceptualisation, design) all concepts of

functional entities, except execution threads, disappear

at run-time – at least partially – insofar their rationale

and functionality have been implanted into threads. On

the contrary, the thread preserves full autonomy and

operational ability, being the central dynamic entity

accepted by the system. In order not to distort the

semantics of cooperation/rivalry between agents/holons,

their interaction has to remain operational at run-time. In

other words, no matter how refined and sophisticated

negotiation methods could be, to make any sense at run-

time, they must reflect themselves in thread abilities.

The main idea is to raise the importance of priorities

from the minor significance of technological mechanism

to the major conceptual role of expressing holarchies –

and, perhaps as a “potentiometer” for building refined

temporary holarchies. In order to carry out this macro-

architectural role, some specific issues are proposed and

elaborated upon: a) assigning high-level meaning to

priorities (e.g. position of holons in holarchies); b)

applying dynamic priorities to express more accurately

generic architectures (ranging from quite simple agents

to temporary holarchies); and c) refining the granularity

of all architectural levels. So, without intending to pro-

pose a new model, the paper illustrates how minor

theoretical changes of existing MAS models [12] are

necessary in order to formalize the semantics of

priorities. Specifically, the only adjustment proposed

consists of replacing the Boolean characterization of

agent state variables with a multi-valued one. All these

aspects are outlined in the context of our Robocup team

(entirely implemented in Java).

 4. Implementing holons and agents

How we already see (Table 1) our proposed

architecture is based on holons for RoboCup simulator

league. Last year our team took part at the RoboCup

1999 competition event in Stockholm, where our team

obtain good results at the first participation. Based on

this experience we redesign our existing team to work

on new approach. Our problem was to find the best

solution to adapt our existing implementation in Java for

this new approach. For this competition year RoboCup

2000 we chose to implement only few holons because

the time necessary to be implemented and tested in

Figure 1.Generic holon architecture (adapted from [4])

RoboCup domain is big. First of all we start to design in

Java the generic holon (Figure 1). For that we chose to

use a multi-threading approach because practically, how

we early said, a holon we can identify with an agent and

in one holon we have few agents. How results from Fig.

1 we have to implement for holon the capability of

reaction but, in the same time, the deliberative process,

that is a more complex task and also a holarchy level.

For that we design a multi-threading architecture like in

Figure 2.

We tried to respect all the desiderate from

Figure 1 that means that our holon - agent must be

capable to communicate with other holons but in the

same time with other players. The solution find for this

problem is very simple because the communication task

with other holons is like to communicate with other

agents. Here the algorithms used could be very complex,

on other hand to communicate with other players

(entities) is like to communicate with other holons the

single difference is the method used. The rest of the

functionalities are encapsulated in each thread, for

example the deliberation level is in deliberation thread

with specific implementation (algorithms).

At the player level (Table 1) are the holons

who handle the resources (i.e. player stamina),

implement the skills (i.e. pass, dribble, score), model the

game tactic and coordinate the body parts in future. The

resource holon handles the player stamina, simulation

cycle and implement skills. In current implementation

our skills used analytical methods.

At the product level we have more complex

problem like tactics where we used a fixed decision tree

obtained with an off-line algorithm, but also we have to

implement the necessary knowledge to resolve the

advice contains strategies request comes from other

holons.

At the Order level we have more abstract and

complex task like learn. At this level we implemented a

neural network [16] that was used to obtain the strategic

positioning when players don’t have the ball control.

This type of neural network we used also in 1999

competition with some promising results.

With this architecture we can control better our

players because when a new situation appear

immediately one of the holons will react at the

environment changes. Is also possible that more than

one holon to react at the changes; for example one react

using reactive modules and the other one have some

other plans generated by deliberative level and the

negotiation process begin. In this moment we test only a

very simple negotiation model based on fixed priorities.

To obtain a collaborative team was necessary to

implement the team level where the biggest problem was

at the resource level because here the information are

shared with the rest of the team mates and the schemata

selection is based on the previous off-line learned

knowledge.

 5. Conclusion and future work

The noticeable conclusions are: a) Despite being a

conventional approach, not even the potential of con-

current programming facilities offered by existing

operating environments is fully used. b) The other two

paradigms are even sparser represented in actual

systems (perhaps, because of the dissimilar domains

they come from – or of their relative novelty); especially

the holonic approach is almost absent. c) Moreover,

even if they are taken into consideration, they are taken

isolated in every concern. d) It seems to be rather a gap

between the architecture at the problem-solving level

and the structure at the implementation one (thus, some

relevant concepts have up to now, more or less, purely

“technological” role)

Interaction between a large number of low level

agents results in complex system behaviour that is

difficult to understand, to control and to predict.

Structuring the agents in a hierarchy is the appropriate

solution to tackle this complexity. The necessity to deal

with different levels of abstraction has been pointed out

by several authors [10,N3,4]. For example, Scerri,

Tambe and Pynadath [N3] layered the team agents on

the basis of their adjustable autonomy, matching so the

levels of autonomy existing in human organizations.

Thus, the system that supports an adjustable autonomy is

able to dynamically change the autonomy it has to make

and carry out decisions. In this case, the agent’s role in

the team composition is mapped with a degree of

autonomy necessary to achieve its responsibility.

 The conclusions, yet partial and amendable,

highlight the points where the approach seems positive;

some of them are:

Threads Global methods

Reactive - level

Deliberation – level

Hollachy - level

Internal world model

I/O – methods

Communications abilities

Figure 2.Generic holon implementation

- A multilevel environment as Robocup is better

assisted by a joint holon/agent model than by a

monoparadigmatic one.

- Because of the significant differences between the

paradigms, and the successful employment of MAS, it is

better to start out from agents and add stepwise holonic

functionality, than vice versa.

- The three-layer agent architecture allowed a

sound and practical shift in this direction.

- In this “off-line context”, the approach worked

(the new team won all games played against the 1999

team); of course, a credible validation can be achieved

only in a championship.

The still open aspects are underlined too (e.g., for

the game strategy the order holon is insufficiently

adapted; negotiation between holons is still to primitive;

no matter the applied paradigm, skill remains of

paramount importance).

From a quite general perspective, future objectives

are: extending the holarchy with two new levels (team

and player-components, respectively); moving further

from agent to holon, by improving the architecture of

individual entities, as well as their relationship (mainly

interholonic negotiation/communication [15]; extending

the approach to other domains. Furthermore, we plan to

test our approach in more complex simulation

environments [N1](i.e. RoboCup Rescue - a project

focused on multiple agents collaborating to rescue

civilians from a disaster area) in which high complexity,

vital robustness, and response time become critical

factors.

REFERENCES

1. Bărbat, B. and C.B. Zamfirescu (1999). A3CKM:

Anthropocentric Agent Architectures for complex

knowledge management, Acta Universitas

Cibiniensis, Vol. XXXVIII, Sibiu, pp. 23-28.

2. Candea, C., Oancea, M. and Volovici, D. (1999).

Emulating real soccer, in Proceedings of the Inter-

national Conference Beyond 2000, Sibiu, pp. 35 -

38

3. Candea, C., M. Staicu, and B. Bărbat (2000). Holon -

Like Approach for Robotic Soccer. In: Proceedings

of the RoboCup European Workshop 2000,

Amsterdam

4. Fischer, K. (1998). An Agent-Based Approach to

Holonic Manufacturing Systems. In: Intelligent Sys-

tems for Manufacturing: Multi-Agent Systems and

Virtual Organizations. Proceedings of the

BASYS’98 3rd IEEE/IFIP Int.Conf. Prague (L.

Camarinha-Matos, H. Afsarmanesh, V. Marik,

Eds.), pp. 3-12, Kluwer Academic Publishers,

Boston.
5. Giebels, M., Kals, H. and Zijm, H. (1999). Building

Holarchies for Concurrent Manufacturing Planning

and Control. Proceedings of the second

International Workshop on Intelligent

Manufacturing Systems, Leuven, Belgium, pp.49-56

6. Hermans, K., Y. Berbers, B. Robben and H. Van

Brussel (1999). A software framework for shop

floor control systems using active objects. In: H.

Van Brussel and P. Valckenaers (Eds.). Proceed-

ings of the Second International Workshop on

Intelligent Manufacturing Systems, Katholieke Uni-

versiteit Leuven, pp. 137-145.

7. Hino, R. and Moriwaki, T.(1999) Decentralized

Scheduling in Holonic Manufacturing System. Pro-

ceedings of the second International Workshop on

Intelligent Manufacturing Systems, Leuven,

Belgium, pp.41-47

8. Iozon, G. and Candea, C. (1999). RoboCup ’99.

Level and Trend, in Proceedings of the International

Conference Beyond 2000 Sibiu,pp. 61 - 64

9. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I. and

Osaw, E. Robocup: The Robot World Cup Initiative

{DOAR UN “AND” LA URMA}

10. Nwana, H.S. and M. Wooldridge (1997). Software

Agent Technologies. In H. S. Nwana, N. Azarmi

(Eds.). Software Agents and Soft Computing. To-

wards Enhancing Machine Intelligence, Springer-

Verlag, Berlin, pp. 59-78.

11. Pallmann, D. (1999). Programming Bots, Spiders,

and Intelligent Agents in Microsoft Visual C++.

Microsoft Press, Redmond, WA.

12. Patriti V.F., K. Schäfer, P. Charpentier and P.

Martin (1998). Analytical design methodology of

agent oriented manufacturing systems. In L.M.

Camarinha-Matos, Holon Afsarmanesh and V.

Marik (Eds.). Intelligent Systems for

Manufacturing. Multi-Agent Systems and Virtual

Organisations, Kluwer Academic Press, Boston, pp.

99-108.

13. Van Brussel, H. (1994) Holonic Manufacturing

Systems, the vision matching the problem. Proceed-

ings of the First European Conference on Holonic

Manufacturing Systems, Hannover, Germany, IFW-

Hannover(ed),

14. Wyms, J. and Van Brussel, H. and Bogaerts, L.

(1999) Design Pattern for Integrating centralised

scheduling in distributed holonic manufacturing

control systems. Proceedings of the second Internat-

ional Workshop on Intelligent Manufacturing

Systems, Leuven, Belgium, pp.75-82

15. Zamfirescu, C.B. and F.G. Filip (1999). An agent-

oriented approach to team-based manufacturing sys-

tems. In: H. Van Brussel and P. Valckenaers (Eds.).

Proceedings of the Second International Workshop

on Intelligent Manufacturing Systems, Katholieke

Universiteit Leuven, pp. 651-658.

 [N1] Ranjit Nair, Takayuki Ito, Milind Tambe, and

Stacy Marsella. "Robocup Rescue: A Proposal and

Preliminary Experiences, Workshop on Robocup Rescue

at International Conference on Multiagent Systems

(ICMAS2000), 2000.

[N2] N. R. Jennings (1999) "Agent-Oriented

Software Engineering" Proc. 12th Int Conf on Industrial

and Engineering Applications of AI, Cairo, Egypt, 4-10.

 [N3] Scerri, P., Tambe, M., Lee, H., Pynadath, D.,

et al 2000, Don't cancel my Barcelona trip: Adjusting

the autonomy of agent proxies in human organizations.

Proceedings of the AAAI Fall Symposium on Socially

Intelligent Agent

